共享模型之无锁
问题提出:有如下需求,保证 account.withdraw
取款方法的线程安全
package cn.itcast;
import java.util.ArrayList;
import java.util.List;
interface Account {
// 获取余额
Integer getBalance();
// 取款
void withdraw(Integer amount);
/**
* 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
* 如果初始余额为 10000 那么正确的结果应当是 0
*/
static void demo(Account account) {
List<Thread> ts = new ArrayList<>();
long start = System.nanoTime();
for (int i = 0; i < 1000; i++) {
ts.add(new Thread(() -> {
account.withdraw(10);
}));
}
ts.forEach(Thread::start);
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
long end = System.nanoTime();
System.out.println(account.getBalance()
+ " cost: " + (end-start)/1000_000 + " ms");
}
}
原有实现并不是线程安全的
class AccountUnsafe implements Account {
private Integer balance;
public AccountUnsafe(Integer balance) {
this.balance = balance;
}
@Override
public Integer getBalance() {
return balance;
}
@Override
public void withdraw(Integer amount) {
balance -= amount;
}
}
执行测试代码
public static void main(String[] args) {
Account.demo(new AccountUnsafe(10000));
}
某次的执行结果
330 cost: 306 ms
为什么不安全:withdraw
方法
public void withdraw(Integer amount) {
balance -= amount;
}
对应的字节码
ALOAD 0 // <- this
ALOAD 0
GETFIELD cn/itcast/AccountUnsafe.balance : Ljava/lang/Integer; // <- this.balance
INVOKEVIRTUAL java/lang/Integer.intValue ()I // 拆箱
ALOAD 1 // <- amount
INVOKEVIRTUAL java/lang/Integer.intValue ()I // 拆箱
ISUB // 减法
INVOKESTATIC java/lang/Integer.valueOf (I)Ljava/lang/Integer; // 结果装箱
PUTFIELD cn/itcast/AccountUnsafe.balance : Ljava/lang/Integer; // -> this.balance
多线程执行
ALOAD 0 // thread-0 <- this
ALOAD 0
GETFIELD cn/itcast/AccountUnsafe.balance // thread-0 <- this.balance
INVOKEVIRTUAL java/lang/Integer.intValue // thread-0 拆箱
ALOAD 1 // thread-0 <- amount
INVOKEVIRTUAL java/lang/Integer.intValue // thread-0 拆箱
ISUB // thread-0 减法
INVOKESTATIC java/lang/Integer.valueOf // thread-0 结果装箱
PUTFIELD cn/itcast/AccountUnsafe.balance // thread-0 -> this.balance
ALOAD 0 // thread-1 <- this
ALOAD 0
GETFIELD cn/itcast/AccountUnsafe.balance // thread-1 <- this.balance
INVOKEVIRTUAL java/lang/Integer.intValue // thread-1 拆箱
ALOAD 1 // thread-1 <- amount
INVOKEVIRTUAL java/lang/Integer.intValue // thread-1 拆箱
ISUB // thread-1 减法
INVOKESTATIC java/lang/Integer.valueOf // thread-1 结果装箱
PUTFIELD cn/itcast/AccountUnsafe.balance // thread-1 -> this.balance
原因:Integer虽然是不可变类,其方法是线程安全的,但是以上操作涉及到了多个方法的组合,等价于以下代码:
balance = new Integer(Integer.valueOf(balance) - amount);
前一个方法(valueOf)的结果决定后一个方法(构造方法),这种组合在多线程环境下线程不安全。
互斥同步
解决思路-锁(悲观互斥)首先想到的是给 Account 对象加锁
class AccountUnsafe implements Account {
private Integer balance;
public AccountUnsafe(Integer balance) {
this.balance = balance;
}
@Override
public synchronized Integer getBalance() {
return balance;
}
@Override
public synchronized void withdraw(Integer amount) {
balance -= amount;
}
}
结果为
0 cost: 399 ms
synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁,你们才有机会。
在线程竞争不激烈的情况下,如何对性能进行优化?
非阻塞同步CAS
CAS的全称是: Compare And Swap(比较再交换),它体现的一种乐观锁的思想,在无锁情况下保证线程操作共享数据的原子性。
在JUC( java.util.concurrent )包下实现的很多类都用到了CAS操作
AbstractQueuedSynchronizer
(AQS框架)AtomicXXX
类
例子:我们还是基于刚才学习过的JMM内存模型进行说明
- 线程1与线程2都从主内存中获取变量int a = 100,同时放到各个线程的工作内存中
一个当前内存值V、旧的预期值A、即将更新的值B,当且仅当旧的预期值A和内存值V相同时,将内存值修改为B并返回true,否则什么都不做,并返回false。如果CAS操作失败,通过自旋的方式等待并再次尝试,直到成功。
- 线程1操作:V:int a = 100,A:int a = 100,B:修改后的值:int a = 101 (a++)
- 线程1拿A的值与主内存V的值进行比较,判断是否相等
- 如果相等,则把B的值101更新到主内存中
- 线程2操作:V:int a = 100,A:int a = 100,B:修改后的值:int a = 99(a--)
- 线程2拿A的值与主内存V的值进行比较,判断是否相等(目前不相等,因为线程1已更新V的值99)
- 不相等,则线程2更新失败
自旋锁操作
因为没有加锁,所以线程不会陷入阻塞,效率较高
如果竞争激烈,重试频繁发生,效率会受影响
while (true) {
int 旧值A = 共享变量V;
int 结果B = 旧值 + 1;
if (compareAndSwap(旧值A,结果B)) {
// 成功,退出循环
}
}
需要不断尝试获取共享内存V中最新的值,然后再在新的值的基础上进行更新操作,如果失败就继续尝试获取新的值,直到更新成功
CAS 底层实现
CAS 底层依赖于一个 Unsafe 类来直接调用操作系统底层的 CAS 指令
public final class Unsafe {
public final native boolean compareAndSwapObject(Object var1,
long var2,
Object var4,
Object var5);
public final native boolean compareAndSwapInt(Object var1,
long var2,
int var4,
int var5);
public final native boolean compareAndSwapLong(Object var1,
long var2,
long var4,
long var6);
}
都是native修饰的方法,由系统提供的接口执行,并非java代码实现,一般的思路也都是自旋锁实现
while (true) {
int 旧值A = 共享变量V;
int 结果B = 旧值 + 1;
if (compareAndSwap(旧值A,结果B)) {
// 成功,退出循环
}
}
在java中比较常见使用有很多,比如ReentrantLock和Atomic开头的线程安全类,都调用了Unsafe中的方法
- ReentrantLock中的一段CAS代码
protected final boolean compareAndSetState(int expect, int update) {
// this 当前值
// stateOffset 当前释放存在线程运行
// expect 期望的值
// update 更新后的值
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
问题解决
解决思路-无锁(乐观重试)
class AccountSafe implements Account {
private AtomicInteger balance;
public AccountSafe(Integer balance) {
this.balance = new AtomicInteger(balance);
}
@Override
public Integer getBalance() {
return balance.get();
}
@Override
public void withdraw(Integer amount) {
while (true) {
int prev = balance.get();
int next = prev - amount;
if (balance.compareAndSet(prev, next)) {
break;
}
}
// 可以简化为下面的方法
// balance.addAndGet(-1 * amount);
}
public static void main(String[] args) {
Account.demo(new AccountSafe(10000));
}
}
某次的执行结果
0 cost: 302 ms
前面看到的 AtomicInteger 的解决方法,内部并没有用锁来保护共享变量的线程安全。那么它是如何实现的呢?
public void withdraw(Integer amount) {
// 需要不断尝试,直到成功为止
while (true) {
// 比如拿到了旧值 1000
int prev = balance.get();
// 在这个基础上 1000-10 = 990
int next = prev - amount;
/*
compareAndSet 正是做这个检查,在 set 前,先比较 prev 与当前值
- 不一致了,next 作废,返回 false 表示失败
比如,别的线程已经做了减法,当前值已经被减成了 990
那么本线程的这次 990 就作废了,进入 while 下次循环重试
- 一致,以 next 设置为新值,返回 true 表示成功
*/
if (balance.compareAndSet(prev, next)) {
break;
}
//或者简洁一点:
//balance.getAndAdd(-1 * amount);
}
}
其中的关键是 compareAndSet,它的简称就是 CAS (也有 Compare And Swap 的说法),它必须是原子操作。
注意
其实 CAS 的底层是 lock cmpxchg 指令(X86 架构),在单核 CPU 和多核 CPU 下都能够保证【比较-交换】的原子性。
- 在多核状态下,某个核执行到带 lock 的指令时,CPU 会让总线锁住,当这个核把此指令执行完毕,再开启总线。这个过程中不会被线程的调度机制所打断,保证了多个线程对内存操作的准确性,是原子的。
慢动作分析
@Slf4j
public class SlowMotion {
public static void main(String[] args) {
AtomicInteger balance = new AtomicInteger(10000);
int mainPrev = balance.get();
log.debug("try get {}", mainPrev);
new Thread(() -> {
sleep(1000);
int prev = balance.get();
balance.compareAndSet(prev, 9000);
log.debug(balance.toString());
}, "t1").start();
sleep(2000);
log.debug("try set 8000...");
boolean isSuccess = balance.compareAndSet(mainPrev, 8000);
log.debug("is success ? {}", isSuccess);
if(!isSuccess){
mainPrev = balance.get();
log.debug("try set 8000...");
isSuccess = balance.compareAndSet(mainPrev, 8000);
log.debug("is success ? {}", isSuccess);
}
}
private static void sleep(int millis) {
try {
Thread.sleep(millis);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
输出结果
2019-10-13 11:28:37.134 [main] try get 10000
2019-10-13 11:28:38.154 [t1] 9000
2019-10-13 11:28:39.154 [main] try set 8000...
2019-10-13 11:28:39.154 [main] is success ? false
2019-10-13 11:28:39.154 [main] try set 8000...
2019-10-13 11:28:39.154 [main] is success ? true
volatile
获取共享变量时,为了保证该变量的可见性,需要使用 volatile
修饰。
它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存。即一个线程对 volatile 变量的修改,对另一个线程可见。
注意
volatile 仅仅保证了共享变量的可见性,让其它线程能够看到最新值,但不能解决指令交错问题(不能保证原子性)
CAS 必须借助 volatile
才能读取到共享变量的最新值来实现【比较并交换】的效果。
为什么无锁效率高
- 无锁情况下,即使重试失败,线程始终在高速运行,没有停歇,类似于自旋。而
synchronized
会让线程在没有获得锁的时候,发生上下文切换,进入阻塞。线程的上下文切换是费时的,在重试次数不是太多时,无锁的效率高于有锁。 - 线程就好像高速跑道上的赛车,高速运行时,速度超快,一旦发生上下文切换,就好比赛车要减速、熄火, 等被唤醒又得重新打火、启动、加速... 恢复到高速运行,代价比较大
- 但无锁情况下,因为线程要保持运行,需要额外 CPU 的支持,CPU 在这里就好比高速跑道,没有额外的跑道,线程想高速运行也无从谈起,虽然不会进入阻塞,但由于没有分到时间片,仍然会进入可运行状态,还是会导致上下文切换。所以总的来说,当线程数小于等于cpu核心数时,使用无锁方案是很合适的,因为有足够多的cpu让线程运行。当线程数远多于cpu核心数时,无锁效率相比于有锁就没有太大优势,因为依旧会发生上下文切换。
CAS 的特点
结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景下。
- CAS 是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再重试呗。
- synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁,你们才有机会。
- CAS 体现的是无锁并发、无阻塞并发,请仔细体会这两句话的意思
- 因为没有使用 synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一
- 但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响
💡思考: CAS 你知道吗?
- CAS 全称 Compare And Swap 比较在交换;体现的是一种乐观锁思想,在无锁状态下保证线程操作数据的原子性。
- CAS 的底层是调用的 Unsafe 类中的方法,由操作系统提供实现。
💡思考:CAS 的具体流程是怎么样的
我们举个例子,主内存存在一个共享变量为100,现在有两个线程,线程一将共享变量从主内存复制一份做count++
操作,线程二将共享变量从主内存复制一份做 count --
操作。线程一复制的共享变量副本为100,count ++
以后变为了 101,这时我们将共享变量的副本与共享变量的值相等,则将共享变量的值修改为 101。这时线程二复制的共享变量也为100,count--
以后变为了 99,将共享变量副本与共享变量最新的值做对比,100 <> 101,修改失败。这时则会进入自旋操作。
💡思考:乐观锁和悲观锁的区别?
- 乐观锁:CAS 基于乐观锁的思想,是最乐观的估计,不怕别人来修改共享变量,就算修改了也没关系,可以吃亏点在重试。
- 悲观锁:synchronized 是基于悲观锁的思想,是最悲观的估计,防着其它线程来修改共享变量,我上锁了你们都别想修改,我修改成功后解开锁,其他线程才有机会修改。