Collections
线程安全集合类
null
线程安全集合类可以分为三大类:
- 遗留的线程安全集合如
Hashtable
,Vector
- 使用
Collections
装饰的线程安全集合,如:Collections.synchronizedCollection
Collections.synchronizedList
Collections.synchronizedMap
Collections.synchronizedSet
Collections.synchronizedNavigableMap
Collections.synchronizedNavigableSet
Collections.synchronizedSortedMap
Collections.synchronizedSortedSet
- 说明:以上集合均采用修饰模式设计,将非线程安全的集合包装后,在调用方法时包裹了一层synchronized代码块。其并发性并不比遗留的安全集合好。
- java.util.concurrent.*
重点介绍 java.util.concurrent.*
下的线程安全集合类,可以发现它们有规律,里面包含三类关键词: Blocking、CopyOnWrite、Concurrent
- Blocking 大部分实现基于锁,并提供用来阻塞的方法
- CopyOnWrite 之类容器修改开销相对较重
- Concurrent 类型的容器
- 内部很多操作使用 cas 优化,一般可以提供较高吞吐量
- 弱一致性
- 遍历时弱一致性,例如,当利用迭代器遍历时,如果容器发生修改,迭代器仍然可以继续进行遍历,这时内容是旧的
- 求大小弱一致性,size 操作未必是 100% 准确
- 读取弱一致性
遍历时如果发生了修改,对于非安全容器来讲,使用 fail-fast 机制也就是让遍历立刻失败,抛出 ConcurrentModificationException,不再继续遍历
ConcurrentHashMap
搭建练习环境:
java
public class Test {
public static void main(String[] args){
//初始化文件
construct();
}
//开启26个线程,每个线程调用get方法获取map,从对应的文件读取单词并存储到list中,最后调用accept方法进行统计。
public static <V> void calculate(Supplier<Map<String,V>> supplier,
BiConsumer<Map<String,V>, List<String>> consumer) {
Map<String, V> map = supplier.get();
CountDownLatch count = new CountDownLatch(26);
for (int i = 1; i < 27; i++) {
int k = i;
new Thread(()->{
ArrayList<String> list = new ArrayList<>();
read(list,k);
consumer.accept(map,list);
count.countDown();
}).start();
}
try {
count.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(map.toString());
}
//读单词方法的实现
public static void read(List<String> list,int i){
try{
String element;
BufferedReader reader = new BufferedReader(new FileReader(i + ".txt"));
while((element = reader.readLine()) != null){
list.add(element);
}
}catch (IOException e){
}
}
//生成测试数据
public void construct(){
String str = "abcdefghijklmnopqrstuvwxyz";
ArrayList<String> list = new ArrayList<>();
for (int i = 0; i < str.length(); i++) {
for (int j = 0; j < 200; j++) {
list.add(String.valueOf(str.charAt(i)));
}
}
Collections.shuffle(list);
for (int i = 0; i < 26; i++) {
try (PrintWriter out = new PrintWriter(new FileWriter(i + 1 + ".txt"))) {
String collect = list.subList(i * 200, (i + 1) * 200).stream().collect(Collectors.joining("\n"));
out.println(collect);
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
实现一
java
calculate(
// 创建 map 集合
// 创建 ConcurrentHashMap 对不对?
() -> new ConcurrentHashMap<String, Integer>(),
// 进行计数
(map, words) -> {
for (String word : words) {
Integer counter = map.get(word);
int newValue = counter == null ? 1 : counter + 1;
map.put(word, newValue);
}
}
);
输出:
sh
{a=185, b=186, c=153, d=28, e=166, f=58, g=103, h=175, i=126, j=165, k=169, l=185, m=173, n=182, o=155, p=148, q=187, r=191, s=71, t=186, u=96, v=167, w=186, x=160, y=168, z=64}
错误原因:
- ConcurrentHashMap虽然每个方法都是线程安全的,但是多个方法的组合并不是线程安全的。
正确答案一
java
calculate(
() -> new ConcurrentHashMap<String, LongAdder>(),
(map, words) -> {
for (String word : words) {
// 注意不能使用 putIfAbsent,此方法返回的是上一次的 value,首次调用返回 null
map.computeIfAbsent(word, (key) -> new LongAdder()).increment();
}
}
);
说明:
- computIfAbsent方法的作用是:当map中不存在以参数1为key对应的value时,会将参数2函数式接口的返回值作为value,put进map中,然后返回该value。如果存在key,则直接返回value
- 以上两部均是线程安全的。
正确答案二
java
calculate(
() -> new ConcurrentHashMap<String, Integer>(),
(map, words) -> {
for (String word : words) {
// 函数式编程,无需原子变量
map.merge(word, 1, Integer::sum);
}
}
);
ConcurrentLinkedQueue
ConcurrentLinkedQueue 的设计与 LinkedBlockingQueue 非常像,也是
- 两把【锁】,同一时刻,可以允许两个线程同时(一个生产者与一个消费者)执行
- dummy 节点的引入让两把【锁】将来锁住的是不同对象,避免竞争
- 只是这【锁】使用了 cas 来实现
事实上,ConcurrentLinkedQueue 应用还是非常广泛的
例如之前讲的 Tomcat 的 Connector 结构时,Acceptor 作为生产者向 Poller 消费者传递事件信息时,正是采用了 ConcurrentLinkedQueue 将 SocketChannel 给 Poller 使用
null
模仿 ConcurrentLinkedQueue
初始代码
java
package cn.itcast.concurrent.thirdpart.test;
import java.util.Collection;
import java.util.Iterator;
import java.util.Queue;
import java.util.concurrent.atomic.AtomicReference;
public class Test3 {
public static void main(String[] args) {
MyQueue<String> queue = new MyQueue<>();
queue.offer("1");
queue.offer("2");
queue.offer("3");
System.out.println(queue);
}
}
class MyQueue<E> implements Queue<E> {
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (Node<E> p = head; p != null; p = p.next.get()) {
E item = p.item;
if (item != null) {
sb.append(item).append("->");
}
}
sb.append("null");
return sb.toString();
}
@Override
public int size() {
return 0;
}
@Override
public boolean isEmpty() {
return false;
}
@Override
public boolean contains(Object o) {
return false;
}
@Override
public Iterator<E> iterator() {
return null;
}
@Override
public Object[] toArray() {
return new Object[0];
}
@Override
public <T> T[] toArray(T[] a) {
return null;
}
@Override
public boolean add(E e) {
return false;
}
@Override
public boolean remove(Object o) {
return false;
}
@Override
public boolean containsAll(Collection<?> c) {
return false;
}
@Override
public boolean addAll(Collection<? extends E> c) {
return false;
}
@Override
public boolean removeAll(Collection<?> c) {
return false;
}
@Override
public boolean retainAll(Collection<?> c) {
return false;
}
@Override
public void clear() {
}
@Override
public E remove() {
return null;
}
@Override
public E element() {
return null;
}
@Override
public E peek() {
return null;
}
public MyQueue() {
head = last = new Node<>(null, null);
}
private volatile Node<E> last;
private volatile Node<E> head;
private E dequeue() {
/*Node<E> h = head;
Node<E> first = h.next;
h.next = h;
head = first;
E x = first.item;
first.item = null;
return x;*/
return null;
}
@Override
public E poll() {
return null;
}
@Override
public boolean offer(E e) {
return true;
}
static class Node<E> {
volatile E item;
public Node(E item, Node<E> next) {
this.item = item;
this.next = new AtomicReference<>(next);
}
AtomicReference<Node<E>> next;
}
}
offer
java
public boolean offer(E e) {
Node<E> n = new Node<>(e, null);
while(true) {
// 获取尾节点
AtomicReference<Node<E>> next = last.next;
// S1: 真正尾节点的 next 是 null, cas 从 null 到新节点
if(next.compareAndSet(null, n)) {
// 这时的 last 已经是倒数第二, next 不为空了, 其它线程的 cas 肯定失败
// S2: 更新 last 为倒数第一的节点
last = n;
return true;
}
}
}
CopyOnWriteArrayList
CopyOnWriteArraySet
是它的马甲底层实现采用了 写入时拷贝 的思想,增删改操作会将底层数组拷贝一份,更 改操作在新数组上执行,这时不影响其它线程的并发读,读写分离。 以新增为例:
java
public boolean add(E e) {
synchronized (lock) {
// 获取旧的数组
Object[] es = getArray();
int len = es.length;
// 拷贝新的数组(这里是比较耗时的操作,但不影响其它读线程)
es = Arrays.copyOf(es, len + 1);
// 添加新元素
es[len] = e;
// 替换旧的数组
setArray(es);
return true;
}
}
这里的源码版本是 Java 11,在 Java 1.8 中使用的是可重入锁而不是 synchronized
其它读操作并未加锁,例如:
java
public void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
for (Object x : getArray()) {
@SuppressWarnings("unchecked") E e = (E) x;
action.accept(e);
}
}
适合『读多写少』的应用场景
get 弱一致性
时间点 | 操作 |
---|---|
1 | Thread-0 getArray() |
2 | Thread-1 getArray() |
3 | Thread-1 setArray(arrayCopy) |
4 | Thread-0 array[index] |
不容易测试,但问题确实存在
迭代器弱一致性
java
CopyOnWriteArrayList<Integer> list = new CopyOnWriteArrayList<>();
list.add(1);
list.add(2);
list.add(3);
Iterator<Integer> iter = list.iterator();
new Thread(() -> {
list.remove(0);
System.out.println(list);
}).start();
sleep1s();
//此时主线程的iterator依旧指向旧的数组。
while (iter.hasNext()) {
System.out.println(iter.next());
}
不要觉得弱一致性就不好
- 数据库的 MVCC 都是弱一致性的表现
- 并发高和一致性是矛盾的,需要权衡