Skip to content

Redis入门

Redis实战课

从基础入门,到企业应用实战,再到底层原理、源码分析,一套课程拿捏Redis.


面向群体

  • 完全不懂Redis的新手
  • 对Redis有基本了解,想进一步增加Redis企业实战经验的同学
  • 有一定的Redis使用经验,需要深入学习Redis底层原理的同学

学习要求

  • 有使用Spring、SpringBoot、SpringMVC、Mybatis的经验

学习目标

  • 知道NoSQL与SQL的差别
  • 熟悉Redis的常用5种数据结构
  • 熟悉Redis的常用命令
  • 熟练使用Jedis和SpringDataRedis

环境准备

分为两个环境,Mac本地环境和Windows环境

  • Mac本地环境
    • MySQL5.7
    • Redis
    • Nginx
    • Homebrew
  • Windows环境
    • MySQL5.7
    • Redis
    • Nginx

简单介绍

Redis是一种键值型的NoSql数据库,这里有两个关键字:

  • 键值型
  • NoSQL

其中键值型,是指Redis中存储的数据都是以key.value对的形式存储,而value的形式多种多样,可以是字符串.数值.甚至json:

image-20240313160818005

而NoSql则是相对于传统关系型数据库而言,有很大差异的一种数据库。

对于存储的数据,没有类似Mysql那么严格的约束,比如唯一性,是否可以为null等等,所以我们把这种松散结构的数据库,称之为NoSQL数据库。

初识Redis

认识NoSQL

NoSql可以翻译做Not Only Sql(不仅仅是SQL),或者是No Sql(非Sql的)数据库。是相对于传统关系型数据库而言,有很大差异的一种特殊的数据库,因此也称之为非关系型数据库


结构化与非结构化

传统关系型数据库是结构化数据,每一张表都有严格的约束信息:字段名.字段数据类型.字段约束等等信息,插入的数据必须遵守这些约束。

而NoSQL则对数据库格式没有严格约束,往往形式松散,自由。

image-20240313161134063


关联和非关联

传统数据库的表与表之间往往存在关联,例如外键:

image-20240313162716992

而非关系型数据库不存在关联关系,要维护关系要么靠代码中的业务逻辑,要么靠数据之间的耦合:

json
{
  id: 1,
  name: "张三",
  orders: [
    {
       id: 1,
       item: {
           id: 10, title: "荣耀6", price: 4999
       }
    },
    {
       id: 2,
       item: {
           id: 20, title: "小米11", price: 3999
       }
    }
  ]
}

此处要维护“张三”的订单与商品“荣耀”和“小米11”的关系,不得不冗余的将这两个商品保存在张三的订单文档中,不够优雅。还是建议用业务来维护关联关系。


SQL与非SQL

传统关系型数据库会基于Sql语句做查询,语法有统一标准;

而不同的非关系数据库查询语法差异极大,五花八门各种各样。

image-20240313162754596


事务与BASE

传统关系型数据库能满足事务ACID的原则。

而非关系型数据库往往不支持事务,或者不能严格保证ACID的特性,只能实现基本的一致性。


总结

除了上述四点以外,在存储方式.扩展性.查询性能上关系型与非关系型也都有着显著差异,总结如下:

image-20240313162935897

💡思考:存储方式和扩展性解读

  • 存储方式
    • 关系型数据库基于磁盘进行存储,会有大量的磁盘IO,对性能有一定影响
    • 非关系型数据库,他们的操作更多的是依赖于内存来操作,内存的读写速度会非常快,性能自然会好一些
  • 扩展性
    • 关系型数据库集群模式一般是主从,主从数据一致,起到数据备份的作用,称为垂直扩展。
    • 非关系型数据库可以将数据拆分,存储在不同机器上,可以保存海量数据,解决内存大小有限的问题。称为水平扩展。
    • 关系型数据库因为表之间存在关联关系,如果做水平扩展会给数据查询带来很多麻烦

认识Redis

Redis诞生于2009年全称是Remote Dictionary Server 远程词典服务器,是一个基于内存的键值型NoSQL数据库。

特征

  • 键值(key-value)型,value支持多种不同数据结构,功能丰富
  • 单线程,每个命令具备原子性
  • 低延迟,速度快(基于内存.IO多路复用.良好的编码)
  • 支持数据持久化
  • 支持主从集群.分片集群
  • 支持多语言客户端

作者:Antirez

Redis的官方网站地址:https://redis.io/


安装Redis

参考课前资料《Redis安装说明》

Redis常见命令

数据结构

Redis是一个key-value的数据库,key一般是String类型,不过value的类型多种多样:

image-20240313163826733

提示:命令不要死记,学会查询就好啦


Redis为了方便我们学习,将操作不同数据类型的命令也做了分组。


可以查看到不同的命令:

image-20240313164058598

当然我们也可以通过Help命令来帮助我们去查看命令

sh
127.0.0.1:6379> help
redis-cli 7.0.7
To get help about Redis commands type:
      "help @<group>" to get a list of commands in <group>
      "help <command>" for help on <command>
      "help <tab>" to get a list of possible help topics
      "quit" to exit

To set redis-cli preferences:
      ":set hints" enable online hints
      ":set nohints" disable online hints
Set your preferences in ~/.redisclirc
# 查看通用命令
127.0.0.1:6379> help @generic

通用命令

通用指令是部分数据类型的,都可以使用的指令,常见的有:

  • KEYS:查看符合模板的所有key
  • DEL:删除一个指定的key
  • EXISTS:判断key是否存在
  • EXPIRE:给一个key设置有效期,有效期到期时该key会被自动删除
  • TTL:查看一个KEY的剩余有效期

通过 help [command] 可以查看一个命令的具体用法,例如:

sh
127.0.0.1:6379> help keys

  KEYS pattern
  summary: Find all keys matching the given pattern
  since: 1.0.0
  group: generic

代码如下

  • KEYS
sh
127.0.0.1:6379> keys *
1) "name"
2) "age"
127.0.0.1:6379>

# 查询以a开头的key
127.0.0.1:6379> keys a*
1) "age"

💡提示:在生产环境下,不推荐使用keys 命令,因为这个命令在key过多的情况下,效率不高


  • DEL
sh
127.0.0.1:6379> help del

  DEL key [key ...]
  summary: Delete a key
  since: 1.0.0
  group: generic

# 删除单个
127.0.0.1:6379> del name 
# 成功删除1个
(integer) 1 

127.0.0.1:6379> keys *
1) "age"

# 批量添加数据
127.0.0.1:6379> MSET k1 v1 k2 v2 k3 v3 
OK

127.0.0.1:6379> keys *
1) "k3"
2) "k2"
3) "k1"
4) "age"

127.0.0.1:6379> del k1 k2 k3 k4
(integer) 3  
# 此处返回的是成功删除的key,由于redis中只有k1,k2,k3 所以只成功删除3个,最终返回
127.0.0.1:6379>

127.0.0.1:6379> keys * 
# 再查询全部的key
1) "age"	
# 只剩下一个了
127.0.0.1:6379>

  • EXISTS
sh
127.0.0.1:6379> help EXISTS

  EXISTS key [key ...]
  summary: Determine if a key exists
  since: 1.0.0
  group: generic

127.0.0.1:6379> exists age
(integer) 1

127.0.0.1:6379> exists name
(integer) 0

  • EXPIRE
sh
127.0.0.1:6379> expire age 10
(integer) 1

127.0.0.1:6379> ttl age
(integer) 8

127.0.0.1:6379> ttl age
(integer) 6

127.0.0.1:6379> ttl age
(integer) -2

127.0.0.1:6379> ttl age
(integer) -2  
# 当这个key过期了,那么此时查询出来就是-2 

127.0.0.1:6379> keys *
(empty list or set)

127.0.0.1:6379> set age 10 
# 如果没有设置过期时间
OK

127.0.0.1:6379> ttl age
(integer) -1  
# ttl的返回值就是-1

💡提示:内存非常宝贵,对于一些数据,我们应当给他一些过期时间,当过期时间到了之后,他就会自动被删除~


String命令

String类型,也就是字符串类型,是Redis中最简单的存储类型。

其value是字符串,不过根据字符串的格式不同,又可以分为3类:

  • string:普通字符串
  • int:整数类型,可以做自增、自减操作
  • float:浮点类型,可以做自增、自减操作

image-20240313165101876


String的常见命令有:

  • SET:添加或者修改已经存在的一个String类型的键值对
  • GET:根据key获取String类型的value
  • MSET:批量添加多个String类型的键值对
  • MGET:根据多个key获取多个String类型的value
  • INCR:让一个整型的key自增1
  • INCRBY:让一个整型的key自增并指定步长,例如:incrby num 2 让num值自增2
  • INCRBYFLOAT:让一个浮点类型的数字自增并指定步长
  • SETNX:添加一个String类型的键值对,前提是这个key不存在,否则不执行
  • SETEX:添加一个String类型的键值对,并且指定有效期

💡提示:以上命令除了 INCRBYFLOAT 都是常用命令


  • SETGET: 如果 key 不存在则是新增,如果存在则是修改
sh
127.0.0.1:6379> set name Rose  
# 原来不存在
OK

127.0.0.1:6379> get name 
"Rose"

127.0.0.1:6379> set name Jack 
# 原来存在,就是修改
OK

127.0.0.1:6379> get name
"Jack"

  • MSET和MGET
sh
127.0.0.1:6379> MSET k1 v1 k2 v2 k3 v3
OK

127.0.0.1:6379> MGET name age k1 k2 k3
1) "Jack" # 之前存在的name
2) "10"   # 之前存在的age
3) "v1"
4) "v2"
5) "v3"

  • INCR和INCRBY和DECY
sh
127.0.0.1:6379> get age 
"10"

# 增加1
127.0.0.1:6379> incr age 
(integer) 11
    
# 获得age
127.0.0.1:6379> get age 
"11"

# 一次增加2
127.0.0.1:6379> incrby age 2 
(integer) 13 
# 返回目前的age的值
    
127.0.0.1:6379> incrby age 2
(integer) 15
    
# 也可以增加负数,相当于减
127.0.0.1:6379> incrby age -1 
(integer) 14
    
# 一次减少2个
127.0.0.1:6379> incrby age -2 
(integer) 12

# 相当于 incr 负数,减少正常用法
127.0.0.1:6379> DECR age 
(integer) 11
    
127.0.0.1:6379> get age 
"11"

  • SETNX
sh
127.0.0.1:6379> help setnx

  SETNX key value
  summary: Set the value of a key, only if the key does not exist
  since: 1.0.0
  group: string

# 设置名称
127.0.0.1:6379> set name Jack  
OK

# 如果key不存在,则添加成功
127.0.0.1:6379> setnx name lisi 
(integer) 0
# 由于name已经存在,所以lisi的操作失败

127.0.0.1:6379> get name 
"Jack"

# name2 不存在,所以操作成功
127.0.0.1:6379> setnx name2 lisi 
(integer) 1
127.0.0.1:6379> get name2 
"lisi"

  • SETEX
sh
127.0.0.1:6379> setex name 10 jack
OK

127.0.0.1:6379> ttl name
(integer) 8

127.0.0.1:6379> ttl name
(integer) 7

127.0.0.1:6379> ttl name
(integer) 5

Key的层级结构

Redis没有类似MySQL中的Table的概念,我们该如何区分不同类型的key呢?

例如,需要存储用户.商品信息到redis,有一个用户id是1,有一个商品id恰好也是1,此时如果使用id作为key,那就会冲突了,该怎么办?

我们可以通过给key添加前缀加以区分,不过这个前缀不是随便加的,有一定的规范:

Redis的key允许有多个单词形成层级结构,多个单词之间用':'隔开,格式如下:

image-20240313165204351

这个格式并非固定,也可以根据自己的需求来删除或添加词条。

例如我们的项目名称叫 heima,有user和product两种不同类型的数据,我们可以这样定义key:

  • user相关的key:heima:user:1
  • product相关的key:heima:product:1

如果Value是一个Java对象,例如一个User对象,则可以将对象序列化为JSON字符串后存储:

image-20240313165156930

一旦我们向redis采用这样的方式存储,那么在可视化界面中,redis会以层级结构来进行存储,形成类似于这样的结构,更加方便Redis获取数据

image-20240313203936571

Hash命令

Hash类型,也叫散列,其value是一个无序字典,类似于Java中的HashMap结构。

String结构是将对象序列化为JSON字符串后存储,当需要修改对象某个字段时很不方便:

image-20240313170733393

Hash结构可以将对象中的每个字段独立存储,可以针对单个字段做CRUD:

image-20240313170825632


Hash类型的常见命令

  • HSET key field value:添加或者修改hash类型key的field的值
  • HGET key field:获取一个hash类型key的field的值
  • HMSET:批量添加多个hash类型key的field的值
  • HMGET:批量获取多个hash类型key的field的值
  • HGETALL:获取一个hash类型的key中的所有的field和value
  • HKEYS:获取一个hash类型的key中的所有的field
  • HINCRBY:让一个hash类型key的字段值自增并指定步长
  • HSETNX:添加一个hash类型的key的field值,前提是这个field不存在,否则不执行

💡提示:哈希结构也是我们以后实际开发中常用的命令哟


  • HSET和HGET
sh
# 大key是 heima:user:3 小key是name,小value是Lucy
127.0.0.1:6379> HSET heima:user:3 name Lucy
(integer) 1

# 如果操作不存在的数据,则是新增
127.0.0.1:6379> HSET heima:user:3 age 21
(integer) 1

# 如果操作存在的数据,则是修改
127.0.0.1:6379> HSET heima:user:3 age 17 
(integer) 0

127.0.0.1:6379> HGET heima:user:3 name 
"Lucy"


127.0.0.1:6379> HGET heima:user:3 age
"17"

  • HMSET和HMGET
java
127.0.0.1:6379> HMSET heima:user:4 name HanMeiMei
OK
127.0.0.1:6379> HMSET heima:user:4 name LiLei age 20 sex man
OK
127.0.0.1:6379> HMGET heima:user:4 name age sex
1) "LiLei"
2) "20"
3) "man"

  • HGETALL
java
127.0.0.1:6379> HGETALL heima:user:4
1) "name"
2) "LiLei"
3) "age"
4) "20"
5) "sex"
6) "man"

  • HKEYS和HVALS
java
127.0.0.1:6379> HKEYS heima:user:4
1) "name"
2) "age"
3) "sex"
127.0.0.1:6379> HVALS heima:user:4
1) "LiLei"
2) "20"
3) "man"

  • HINCRBY
java
127.0.0.1:6379> HINCRBY  heima:user:4 age 2
(integer) 22
127.0.0.1:6379> HVALS heima:user:4
1) "LiLei"
2) "22"
3) "man"
127.0.0.1:6379> HINCRBY  heima:user:4 age -2
(integer) 20

  • HSETNX
java
127.0.0.1:6379> HSETNX heima:user4 sex woman
(integer) 1
127.0.0.1:6379> HGETALL heima:user:3
1) "name"
2) "Lucy"
3) "age"
4) "17"
127.0.0.1:6379> HSETNX heima:user:3 sex woman
(integer) 1
127.0.0.1:6379> HGETALL heima:user:3
1) "name"
2) "Lucy"
3) "age"
4) "17"
5) "sex"
6) "woman"

List命令

Redis中的List类型与Java中的LinkedList类似,可以看做是一个双向链表结构。既可以支持正向检索和也可以支持反向检索。

特征也与LinkedList类似:

  • 有序
  • 元素可以重复
  • 插入和删除快
  • 查询速度一般

常用来存储一个有序数据,例如:朋友圈点赞列表,评论列表等。


List的常见命令有:

  • LPUSH key element ... :向列表左侧插入一个或多个元素
  • LPOP key:移除并返回列表左侧的第一个元素,没有则返回nil
  • RPUSH key element ... :向列表右侧插入一个或多个元素
  • RPOP key:移除并返回列表右侧的第一个元素
  • LRANGE key star end:返回一段角标范围内的所有元素
  • BLPOP\BRPOP:与LPOP和RPOP类似,只不过在没有元素时等待指定时间,而不是直接返回nil

image-20240313171808743


  • LPUSH和RPUSH
java
127.0.0.1:6379> LPUSH users 1 2 3
(integer) 3
127.0.0.1:6379> RPUSH users 4 5 6
(integer) 6

  • LPOP和RPOP
java
127.0.0.1:6379> LPOP users
"3"
127.0.0.1:6379> RPOP users
"6"

  • LRANGE
java
127.0.0.1:6379> LRANGE users 1 2
1) "1"
2) "4"

如何利用List结构模拟一个栈?

  • 入口和出口在同一边

如何利用List结构模拟一个队列?

  • 入口和出口在不同边

如何利用List结构模拟一个阻塞队列?

  • 入口和出口在不同边出队时采用BLPOP或BRPOP

Set命令

Redis的Set结构与Java中的HashSet类似,可以看做是一个value为null的HashMap。因为也是一个hash表,因此具备与HashSet类似的特征:

  • 无序
  • 元素不可重复
  • 查找快
  • 支持交集.并集.差集等功能

Set类型的常见命令

  • SADD key member ... :向set中添加一个或多个元素
  • SREM key member ... : 移除set中的指定元素
  • SCARD key: 返回set中元素的个数
  • SISMEMBER key member:判断一个元素是否存在于set中
  • SMEMBERS:获取set中的所有元素
  • SINTER key1 key2 ... :求key1与key2的交集
  • SDIFF key1 key2 ... :求key1与key2的差集
  • SUNION key1 key2 ...:求key1和key2的并集

例如两个集合:s1和s2:

image-20240313172240143

求交集、求不同

image-20240313172255039


具体命令

java
127.0.0.1:6379> sadd s1 a b c
(integer) 3
127.0.0.1:6379> smembers s1
1) "c"
2) "b"
3) "a"
127.0.0.1:6379> srem s1 a
(integer) 1
    
127.0.0.1:6379> SISMEMBER s1 a
(integer) 0
    
127.0.0.1:6379> SISMEMBER s1 b
(integer) 1
    
127.0.0.1:6379> SCARD s1
(integer) 2

案例

  • 将下列数据用Redis的Set集合来存储:
  • 张三的好友有:李四.王五.赵六
  • 李四的好友有:王五.麻子.二狗
  • 利用Set的命令实现下列功能:
  • 计算张三的好友有几人
  • 计算张三和李四有哪些共同好友
  • 查询哪些人是张三的好友却不是李四的好友
  • 查询张三和李四的好友总共有哪些人
  • 判断李四是否是张三的好友
  • 判断张三是否是李四的好友
  • 将李四从张三的好友列表中移除
java
127.0.0.1:6379> SADD zs lisi wangwu zhaoliu
(integer) 3
    
127.0.0.1:6379> SADD ls wangwu mazi ergou
(integer) 3
    
127.0.0.1:6379> SCARD zs
(integer) 3
    
127.0.0.1:6379> SINTER zs ls
1) "wangwu"
    
127.0.0.1:6379> SDIFF zs ls
1) "zhaoliu"
2) "lisi"
    
127.0.0.1:6379> SUNION zs ls
1) "wangwu"
2) "zhaoliu"
3) "lisi"
4) "mazi"
5) "ergou"
    
127.0.0.1:6379> SISMEMBER zs lisi
(integer) 1
    
127.0.0.1:6379> SISMEMBER ls zhangsan
(integer) 0
    
127.0.0.1:6379> SREM zs lisi
(integer) 1
    
127.0.0.1:6379> SMEMBERS zs
1) "zhaoliu"
2) "wangwu"

SortedSet类型

Redis的SortedSet是一个可排序的set集合,与Java中的TreeSet有些类似,但底层数据结构却差别很大。SortedSet中的每一个元素都带有一个score属性,可以基于score属性对元素排序,底层的实现是一个跳表(SkipList)加 hash表。


SortedSet具备下列特性:

  • 可排序
  • 元素不重复
  • 查询速度快

因为SortedSet的可排序特性,经常被用来实现排行榜这样的功能。


SortedSet的常见命令有:

  • ZADD key score member:添加一个或多个元素到sorted set ,如果已经存在则更新其score值
  • ZREM key member:删除sorted set中的一个指定元素
  • ZSCORE key member : 获取sorted set中的指定元素的score值
  • ZRANK key member:获取sorted set 中的指定元素的排名
  • ZCARD key:获取sorted set中的元素个数
  • ZCOUNT key min max:统计score值在给定范围内的所有元素的个数
  • ZINCRBY key increment member:让sorted set中的指定元素自增,步长为指定的increment值
  • ZRANGE key min max:按照score排序后,获取指定排名范围内的元素
  • ZRANGEBYSCORE key min max:按照score排序后,获取指定score范围内的元素
  • ZDIFF.ZINTER.ZUNION:求差集.交集.并集

注意:所有的排名默认都是升序,如果要降序则在命令的Z后面添加REV即可,例如:

  • 升序获取sorted set 中的指定元素的排名:ZRANK key member
  • 降序获取sorted set 中的指定元素的排名:ZREVRANK key memeber

将班级的下列学生得分存入Redis的SortedSet中:

Jack 85, Lucy 89, Rose 82, Tom 95, Jerry 78, Amy 92, Miles 76 并实现下列功能

  • 删除Tom同学
  • 获取Amy同学的分数
  • 获取Rose同学的排名
  • 查询80分以下有几个学生
  • 给Amy同学加2分
  • 查出成绩前3名的同学
  • 查出成绩80分以下的所有同学

Java客户端-Jedis

在Redis官网中提供了各种语言的客户端,地址:https://redis.io/docs/clients/

image-20240313172955831

其中Java客户端也包含很多:

image-20240313173546715

标记为❤️的就是推荐使用的java客户端,包括:

  • Jedis和Lettuce:这两个主要是提供了Redis命令对应的API,方便我们操作Redis,而SpringDataRedis又对这两种做了抽象和封装,因此我们后期会直接以SpringDataRedis来学习。
  • Redisson:是在Redis基础上实现了分布式的可伸缩的java数据结构,例如Map.Queue等,而且支持跨进程的同步机制:Lock.Semaphore等待,比较适合用来实现特殊的功能需求。

快速入门

创建工程

image-20240313195246730

引入依赖

xml
<dependencies>
    <!--jedis-->
    <dependency>
        <groupId>redis.clients</groupId>
        <artifactId>jedis</artifactId>
        <version>3.7.0</version>
    </dependency>
    <!--单元测试-->
    <dependency>
        <groupId>org.junit.jupiter</groupId>
        <artifactId>junit-jupiter</artifactId>
        <version>5.7.0</version>
        <scope>test</scope>
    </dependency>
</dependencies>

单元测试

java
package com.heima;

import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;

public class JedisTest {
    private Jedis jedis;

    /**
     * 建立连接
     */
    @BeforeEach
    void setUp(){
        jedis = new Jedis("127.0.0.1", 6379);
        jedis.select(0);
    }


    @Test
    void testString() {
        // 存入数据
        String result = jedis.set("name", "mousse");
        System.out.println("result = " + result);

        // 获取数据
        String name = jedis.get("name");
        System.out.println("name = " + name);
    }

    /**
     * 释放资源
     */
    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }
}

Jedis连接池

Jedis本身是线程不安全的,并且频繁的创建和销毁连接会有性能损耗,因此我们推荐大家使用Jedis连接池代替Jedis的直连方式

有关池化思想,并不仅仅是这里会使用,很多地方都有,比如说我们的数据库连接池,比如我们tomcat中的线程池,这些都是池化思想的体现。


创建连接池

java
package com.heima.config;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

public class JedisConnectionFactory {
    private static final JedisPool jedisPool;

    static {
        //配置连接池
        JedisPoolConfig poolConfig = new JedisPoolConfig();
        poolConfig.setMaxTotal(8);
        poolConfig.setMaxIdle(8);
        poolConfig.setMinIdle(0);
        poolConfig.setMaxWaitMillis(1000);
        //创建连接池对象
        jedisPool = new JedisPool(poolConfig,
                "192.168.150.101", 6379, 1000);
    }

    public static Jedis getJedis() {
        return jedisPool.getResource();
    }
}

📌 代码说明

  • JedisConnectionFacotry:工厂设计模式是实际开发中非常常用的一种设计模式,我们可以使用工厂,去降低代的耦合,比如 Spring 中的 Bean 的创建,就用到了工厂设计模式

  • 静态代码块:随着类的加载而加载,确保只能执行一次,我们在加载当前工厂类的时候,就可以执行 static 的操作完成对 连接池的初始化

  • 最后提供返回连接池中连接的方法.


改造原始代码

java
/**
 * 建立连接
 */
@BeforeEach
void setUp() {
    jedis = new Jedis("127.0.0.1", 6379);
    jedis = JedisConnectionFactory.getJedis(); 
    jedis.select(0);
}

📌代码说明

1.在我们完成了使用工厂设计模式来完成代码的编写之后,我们在获得连接时,就可以通过工厂来获得,而不用直接去new对象,降低耦合,并且使用的还是连接池对象。

2.当我们使用了连接池后,当我们关闭连接其实并不是关闭,而是将Jedis还回连接池的。

SpringDataRedis

SpringData是Spring中数据操作的模块,包含对各种数据库的集成,其中对Redis的集成模块就叫做SpringDataRedis。

官网地址:https://spring.io/projects/spring-data-redis

  • 提供了对不同Redis客户端的整合(Lettuce和Jedis)
  • 提供了RedisTemplate统一API来操作Redis
  • 支持Redis的发布订阅模型
  • 支持Redis哨兵和Redis集群
  • 支持基于Lettuce的响应式编程
  • 支持基于JDK.JSON.字符串.Spring对象的数据序列化及反序列化
  • 支持基于Redis的JDKCollection实现

image-20240313173950471

SpringDataRedis中提供了RedisTemplate工具类,其中封装了各种对Redis的操作。并且将不同数据类型的操作API封装到了不同的类型中:

image-20240313174035996

快速入门

SpringBoot已经提供了对SpringDataRedis的支持,使用非常简单:

导入pom坐标

xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.5.7</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.heima</groupId>
    <artifactId>jedis-demo</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <!--jedis-->
        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
            <version>3.7.0</version>
        </dependency>
        <!--redis依赖-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <!--common-pool-->
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-pool2</artifactId>
        </dependency>
        <!--Jackson依赖-->
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-databind</artifactId>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>

</project>

启动类:RedisApplication

java
package com.heima;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class RedisApplication {
    public static void main(String[] args) {
        SpringApplication.run(RedisApplication.class,args);
    }
}

配置类:RedisConfig

java
package com.heima.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;

@Configuration
public class RedisConfig {

    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory) {
        // 创建RedisTemplate对象
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        // 设置连接工厂
        template.setConnectionFactory(connectionFactory);
        // 返回
        return template;
    }
}

配置文件:application.yml

yaml
spring:
  redis:
    host: 172.0.0.1
    port: 6379
    lettuce:
      pool:
        max-active: 8  #最大连接
        max-idle: 8   #最大空闲连接
        min-idle: 0   #最小空闲连接
        max-wait: 100ms #连接等待时间

测试代码 :RedisDemoApplicationTests

java
package com.heima;

import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.RedisTemplate;

@SpringBootTest
class RedisDemoApplicationTests {

    @Autowired
    private RedisTemplate<String, Object> redisTemplate;

    @Test
    void testString() {
        // 写入一条String数据
        redisTemplate.opsForValue().set("name", "慕斯");
        // 获取string数据
        Object name = redisTemplate.opsForValue().get("name");
        System.out.println("name = " + name);
    }
}

📌 提示:SpringDataJpa 使用起来非常简单,记住如下几个步骤即可

  • 引入 spring-boot-starter-data-redis 依赖
  • application.yml 配置Redis信息
  • 注入 RedisTemplate

数据序列化器

RedisTemplate可以接收任意Object作为值写入Redis:

只不过写入前会把Object序列化为字节形式,默认是采用JDK序列化,得到的结果是这样的:

image-20240313203316709

缺点:

  • 可读性差
  • 内存占用较大

我们可以自定义 RedisTemplate 的序列化方式,代码如下:

java
package com.heima.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;

@Configuration
public class RedisConfig {

    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory) {
        // 创建RedisTemplate对象
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        // 设置连接工厂
        template.setConnectionFactory(connectionFactory);
        // 创建JSON序列化工具
        GenericJackson2JsonRedisSerializer jsonRedisSerializer = new GenericJackson2JsonRedisSerializer();
        // 设置Key的序列化
        template.setKeySerializer(RedisSerializer.string());
        template.setHashKeySerializer(RedisSerializer.string());
        // 设置Value的序列化
        template.setValueSerializer(jsonRedisSerializer);
        template.setHashValueSerializer(jsonRedisSerializer);

        // 返回
        return template;
    }
}

这里采用了JSON序列化来代替默认的JDK序列化方式。最终结果如图:

整体可读性有了很大提升,并且能将Java对象自动的序列化为JSON字符串,并且查询时能自动把JSON反序列化为Java对象。不过,其中记录了序列化时对应的class名称,目的是为了查询时实现自动反序列化。这会带来额外的内存开销。


StringRedisTemplate

尽管JSON的序列化方式可以满足我们的需求,但依然存在一些问题,如图:

image-20240313203904571

为了在反序列化时知道对象的类型,JSON序列化器会将类的class类型写入json结果中,存入Redis,会带来额外的内存开销。

为了减少内存的消耗,我们可以采用手动序列化的方式,换句话说,就是不借助默认的序列化器,而是我们自己来控制序列化的动作,同时,我们只采用String的序列化器,这样,在存储value时,我们就不需要在内存中就不用多存储数据,从而节约我们的内存空间

image-20240313174507863

这种用法比较普遍,因此SpringDataRedis就提供了RedisTemplate的子类:StringRedisTemplate,它的key和value的序列化方式默认就是String方式。

image-20240313204101801

省去了我们自定义RedisTemplate的序列化方式的步骤,而是直接使用:

java
package com.heima;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.pojo.User;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.StringRedisTemplate;

@SpringBootTest
class RedisStringTests {

    @Autowired
    private StringRedisTemplate stringRedisTemplate;

    @Test
    void testString() {
        // 写入一条String数据
        stringRedisTemplate.opsForValue().set("verify:phone:13600527634", "124143");
        // 获取string数据
        Object name = stringRedisTemplate.opsForValue().get("name");
        System.out.println("name = " + name);
    }

    private static final ObjectMapper mapper = new ObjectMapper();

    @Test
    void testSaveUser() throws JsonProcessingException {
        // 创建对象
        User user = new User("可乐", 21);
        // 手动序列化
        String json = mapper.writeValueAsString(user);
        // 写入数据
        stringRedisTemplate.opsForValue().set("user:200", json);

        // 获取数据
        String jsonUser = stringRedisTemplate.opsForValue().get("user:200");
        // 手动反序列化
        User user1 = mapper.readValue(jsonUser, User.class);
        System.out.println("user1 = " + user1);
    }

}

此时我们再来看一看存储的数据,小伙伴们就会发现那个class数据已经不在了,节约了我们的空间~

image-20240313204409337

📌 总结:RedisTemplate的两种序列化实践方案:

  • 方案一:

    • 自定义 RedisTemplate
    • 修改 RedisTemplate 的序列化器为 GenericJackson2JsonRedisSerializer
  • 方案二:

    • 使用 StringRedisTemplate
    • 写入Redis时,手动把对象序列化为JSON
    • 读取Redis时,手动把读取到的JSON反序列化为对象

Hash结构操作

在基础篇的最后,咱们对Hash结构操作一下,收一个小尾巴,这个代码咱们就不再解释啦

马上就开始新的篇章~~~进入到我们的Redis实战篇

java
@Test
void testHash() {
    stringRedisTemplate.opsForHash().put("user:400", "name", "虎哥");
    stringRedisTemplate.opsForHash().put("user:400", "age", "21");

    Map<Object, Object> entries = stringRedisTemplate.opsForHash().entries("user:400");
    System.out.println("entries = " + entries);
}